If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49r^2+3=67
We move all terms to the left:
49r^2+3-(67)=0
We add all the numbers together, and all the variables
49r^2-64=0
a = 49; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·49·(-64)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112}{2*49}=\frac{-112}{98} =-1+1/7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112}{2*49}=\frac{112}{98} =1+1/7 $
| 9n+9=24 | | 5x+7=-2x+56 | | 2/3y-8/5=-1/2 | | 6n=14-n | | 8-5m=-6-10m-6 | | 4.6k-9.6=8.8k-1.2 | | -9y-40/18+4y=-5 | | -9-b=2b+9 | | 5x+10=8x+6 | | -1+6x-x=54 | | 7d-10=-3-1+8d | | -7.38-1.6g=-2.41+5.5g | | 10u-3u-9=9u+9 | | 10-5p=-10-3p | | 3p+7p–4=76 | | -6k+8=-9-8k+3 | | 22.5/n=32 | | 8=64/p | | x^2+9x-80=0 | | 15p+(36-8)=9p+11 | | 4x-3=5x=87 | | 6x=36+(-4x) | | 0.5x-51-0.45x=44 | | y+1/2=2y-1/10 | | r^2=2r=15=0 | | 2+4(3x+22x)=2-1 | | 0.5x-0.6(85-0.75x)=44 | | 32+x/12=712 | | 0.05x=95 | | -20.5/t=5.2 | | 4g=+2+2 | | 3x÷1=37 |